

PEDESTAL FAN REDESIGN FINAL PRESENTATION

THE FOLLOWING ARE PROPOSED IDEAS FOR OVERALL IMPROVEMENT AND A BREAKDOWN OF OUR WINNING REDESIGN.

Client: Pax Scientific

Francesca Bertone • fbertone@paxscientific.com
kpenney@paxscientific.com

Advisor:

Deann Garcia • deann_garcia@mcad.edu

Design Team Members:

Stephanie Hebert • shebert@mcad.edu
Angelina Malizia • amalizia@mcad.edu
Ethan Mitchell • emitchell@mcad.edu
Thongminh Nguyen • tnguyen@mcad.edu
Anabel Sinn • asinn@mcad.edu

Table of Contents

Introduction	Pg. 02
Recap of Exploration	Pg. 03
Systems Map	Pg. 04
Bill Of Materials	Pg. 05
Assessing Energy Efficiency	Pg. 06
Functional Unit	Pg. 07
Decision Matrix	Pg. 08
Top 3 Ideas - Narrowing Best Solutions	Pg. 09
Bamboo As Main Unit Material	Pg. 10
Concept 1 - Retrofit/Informationalization	Pg. 11-13
Concept 2 - Base Model	Pg. 14-16
Concept 3 – High End Model	Pg. 17-21
Incorporate Persuasive Behavior	Pg. 22-24
Comparison & Conclusion	Pg. 25-26
Sources	Pg. 27

INTRODUCTION

The MCAD Collaborative Product Design class worked to assess and provide sustainability solutions in consultation with PAX Scientific on their PAX Flair Fan design to increase efficiency, reduce waste, and rethink fan usage as a whole.

RECAP OF EXPLORATION

Week 1: Disassemble and assess the product.

Week 2: Establish design priorities.

Week 3: Explore potential materials.

Week 4: Research material effectiveness.

Week 5: Establish energy priorities.

Week 6: Make the product persuasive to users.

Week 7: Rate and finalize potential solutions.

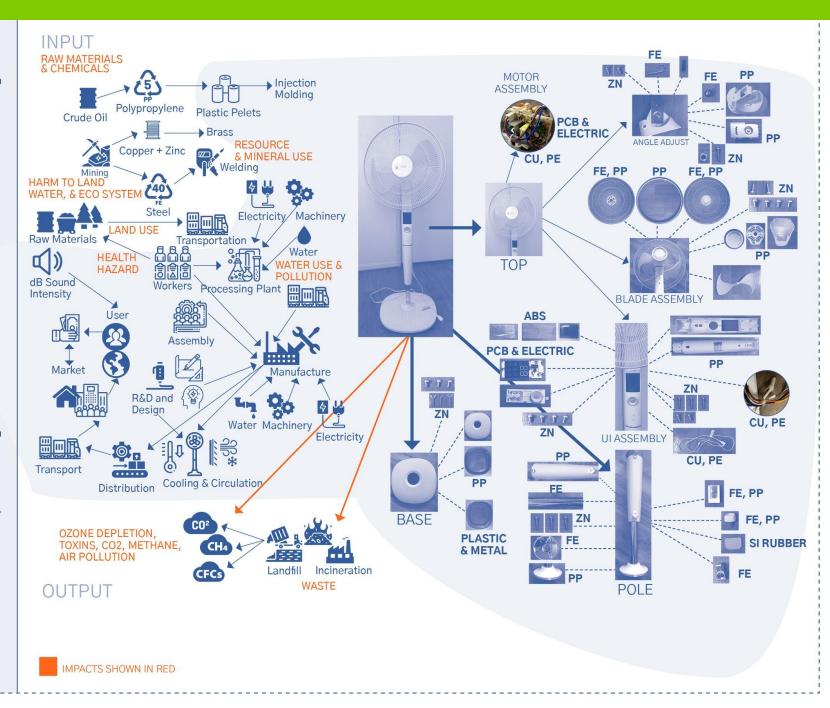
Week 8: Present design recommendations.

FLAIR PEDESTAL FAN SYSTEM MAP (WITH IMPACTS)

DESIGN SCOPE

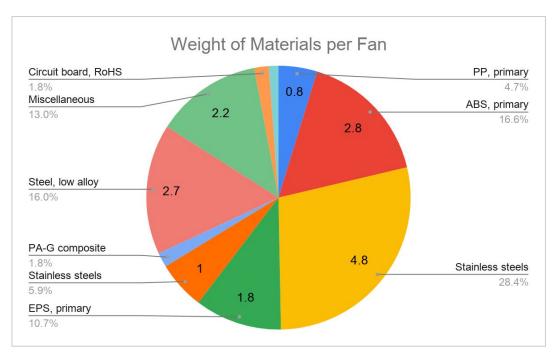
LCA BOUNDARY

The boundary of the LCA is from ready-to-use materials to customer use. The LCA does not include the impact of extracting raw materials such as gases to make plastic pellets. The assumption that the manufac will purchase pla pellets to mold plastic componen


MEASURING IMPACT

THIS EQUATION
MEASURES THE
SUCCESSFULNESS
OF DIFFERENT
DESIGN CONCEPTS.

Imvironmental Impact (Okala MPTS)


Energy Usage (KWH)

Useful Time (Year)

BILL OF MATERIALS

After the pedestal fan is disassembled, components are grouped by their material compositions. Stainless steels have the highest percentage by weight, followed by ABS and low alloy steel.

Group by Components	Material	Weight (lb)
Base enclosure	PP, primary	8.0
Enclosure (base, pole, and top), height adjust, and blade stopper	ABS, primary	2.8
Base weight	Stainless steels	4.8
Base weight	EPS, primary	1.8
Pole enclosure, base weight, screws, height adjust, angle adjust	Stainless steels	1.0
Pole height adjust stopper	Silicone	0.0
Blade	PA-G composite	0.3
Blade enclosure	Steel, low alloy	2.7
Top blade enclosure joint lock, protective sheets, screen cover	PC, primary	0.0
Top motor assembly (various materials)	Miscellaneous	2.2
Electronics	Circuit board, RoHS	0.3
Wire insulator	B-PVC, primary	0.2

ASSESSING ENERGY EFFICIENCY

TOP USERS OF ENERGY:

- **1. In life Motor:** The power consumption of the fan increases with the usage time. The power consumption mainly comes from the DC motor that turns the fan blade.
- 2. Embodied energy Metal: Metal has a high embodied energy due to the impact of the processes of mining, refining, and producing.
- 3. Inert energy Electronics: Electronics require an intricate construction of relatively high impact materials like metals.

FUNCTIONAL UNIT

Assumptions and calculations during assessment and redesign:

Usage: 50,000 Hours minimum

11.4 Years if operates 24/7 for half a year

7.6 Years if operates 24/7 for three quarters of a year

Environmental Impact (Okala mPts)

PER /

Energy Use (kWh)

PER / Year (year)

DECISION MATRIX

We narrowed down our top ideas to the 6 following ideas:

- 1. Use bamboo for all possible materials in unit.
- 2. Retrofit Blade Option to allow existing fans to remain in use with increased efficiency.
- 3. Informationalization Offer 3D model of blade for user to print their own as Product-Service Systems offering.
- 4. Gamification Improve user engagement and brand awareness.
- 5. Modularity keep the motor/cage the same on all models and offer alternative bases for table top, pedestal, clamp, etc..
- 6. Simplifying parts and features Reduce functions for efficiency and reduced material use.

	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5	Cost	Usability	Desirability	Repairability, Replaceability	Feasibility	Total Score
Weight	4	5	3	4	2	4	4	3	5	3	
Idea 1	5	1	3	4	3	1	1	3	2	3	83
Idea 2	5	5	5	5	5	5	1	1	3	2	132
Idea 3	5	5	5	5	5	1	2	1	3	1	120
Idea 4	1	5	1	1	1	1	5	4	1	4	79
Idea 5	3	1	4	4	3	5	4	4	3	4	114
Idea 6	4	2	3	4	2	4	4	2	3	5	108

Scoring Key:

5 = Best in the market. Significant improvement over existing design. Paradigm shifting.

- 4 = Great but no paradigm shift.
- 3 = Statistically significant. Measurable impact.
- 2 = Slightly better than existing design.
- 1 = Lateral change.

Weight Key:

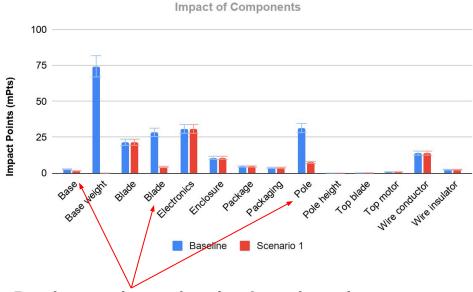
The priorities are weighed based on cradle to cradle concepts and the four system conditions in the Natural Step. The highest weight (most important) is 5, and the lowest weight (least important) is 1.

- Priority 1: 4, meet cradle to cradle and system conditions 1 through 3
- Priority 2: 5, energy usage has the highest impact
- Priority 3: 3, insignificant compared to energy usage
- Priority 4: 4, a limited factor when fan usage is required
- Priority 5: 2, reduce cost at production stage, impact occurs mostly in usage stage
- Cost: 4, must be affordable, satisfy system condition 4
- Usability: 4, must be easy to use
- Desirability: 3, a limited factor when fan usage is required
- Repairability/Replaceability: 5, key factor in system condition 2
- Feasibility: 3, not a dominant factor on customers' experience

TOP 3 IDEAS: NARROW BEST SOLUTIONS

- 1. Retrofit Kit: Blade rendering, how-to instructions/videos/network for fix-it people, Informationalization (provide 3D model for sale for users to print on their own)
- 2. Base Model: Bamboo, reduced functions (including a list of basic features) simple modular bases
- 3. High End Model: Information sharing, gamification, bamboo, advanced modular bases, app Interface

Top ideas used the following priorities for redesign:


BAMBOO AS MAIN UNIT MATERIAL

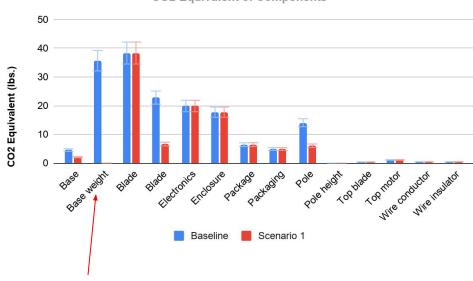
Summary of Changes

- Steel in the base, pole, and blade enclosure was removed.
- Bamboo was used to replace plastic in the base, pole, and blade enclosure.
- The weight of bamboo is similar and hence assumed to be equal to that of plastic (ABS and PP)

(Environmental Impact)

Baseline vs. Scenario 1

Bamboo replaces the plastic and steel in the base enclosure, the pole enclosure, the motor enclosure, and the blade enclosure.

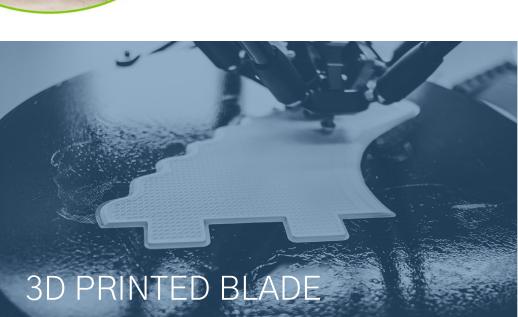

Outcome

 Using bamboo yields a combined <u>55% reduction</u> in environmental impact and CO₂ emission in all product life cycle except the usage phase.

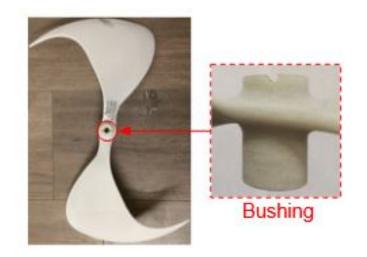
(CO₂ Equivalent)

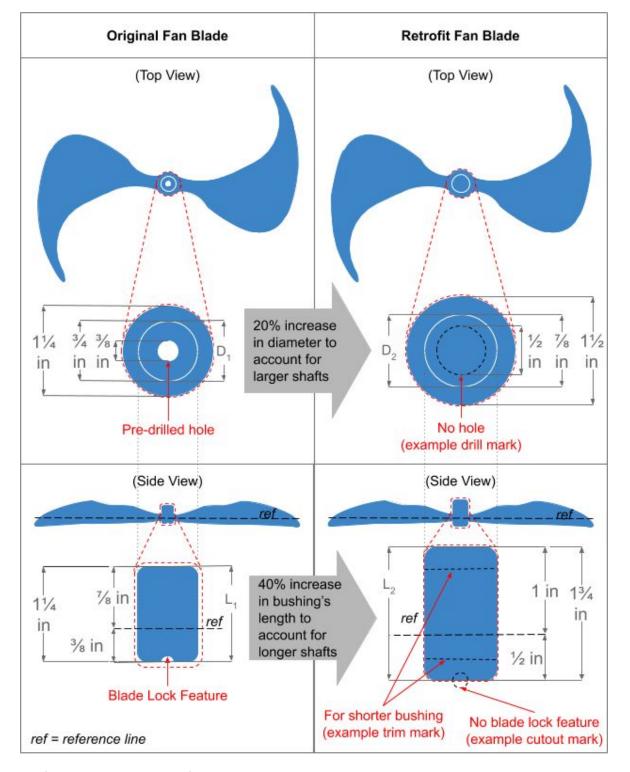
Baseline vs. Scenario 1

CO2 Equivalent of Components



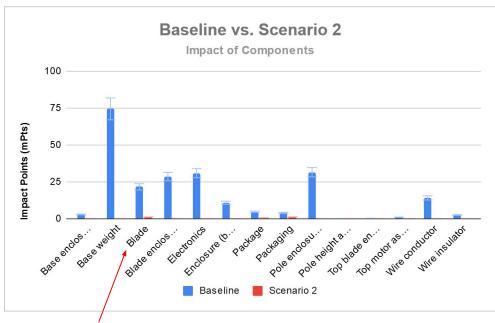
The base weight is removed. The redesigns did not require the use of the base weight. See slides on modularity for more info.


CONCEPT 1 – RETROFIT KIT AND INFORMATIONALIZATION

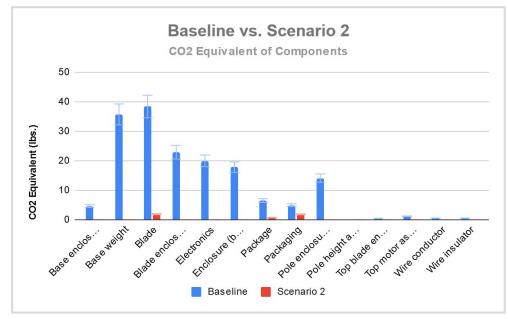


RETROFIT WITH PAX MOTOR/BLADE

Enable Retrofitting by Oversizing the Bushing

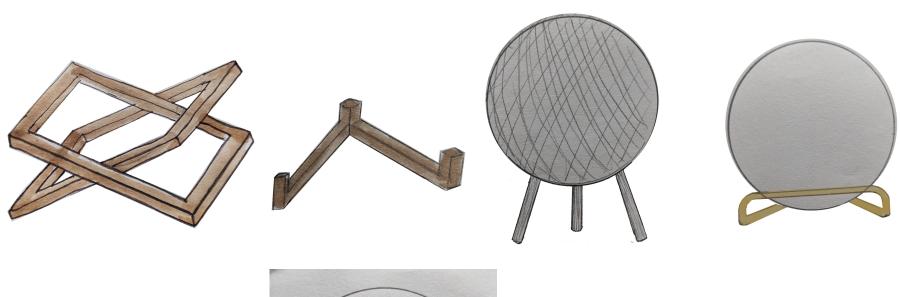


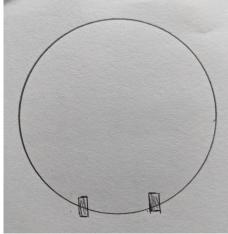
LIFE CYCLE ANALYSIS OF RETROFIT OPTIONS


Components	Weight in the Original Design	Weight in the Retrofit Option	Net Weight	Percent Change
Top, Blade	0.3 lb	0.4 lb	+0.1 lb	+33%
Packaging	5.0 lbs	1.8 lbs	-3.2 lbs	-64%
All others	16.7 lbs	0 lb	-16.7 lbs	-100%
Total	22.0 lbs	2.2 lbs	-19.8 lbs	-90%

(Environmental Impact)

The difference in impact points between the baseline blade and retrofit blad is reflected in the production via 3D printing and molding.


(CO₂ Equivalent)

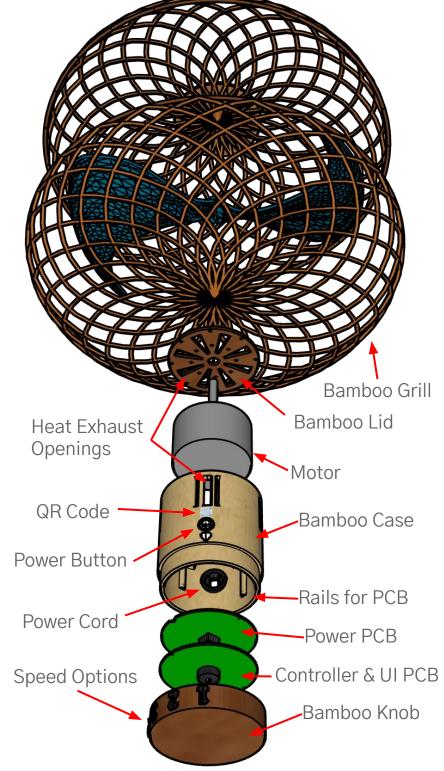


90% of material weight is removed hence 98% reduction in environmental impact and CO_2 emission in all product life cycle except the usage phase.

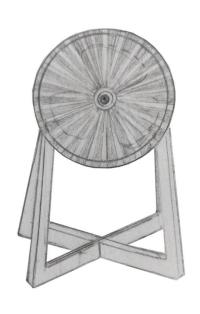
CONCEPT 2 – BASE MODEL FOR RURAL APPLICATIONS

SIMPLIFIED PARTS AND FEATURES

BASE MODEL



BASE 3D MODEL



CONCEPT 3 – HIGH END MODEL

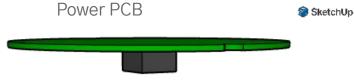
This model includes: Bamboo, optional functions, Information sharing, gamification, advanced modular bases, app interface

Modification of PCBs and Wiring Harness

BASELINE

Circuit Board	Dimensions	Area
Controller and Screen	4 ¾ in x 2 in	9.5 in ²
Knob	4 ¾ in x 1 ¾ in	8.9 in ²
Power	3 ½ in x 2 in	7 in ²

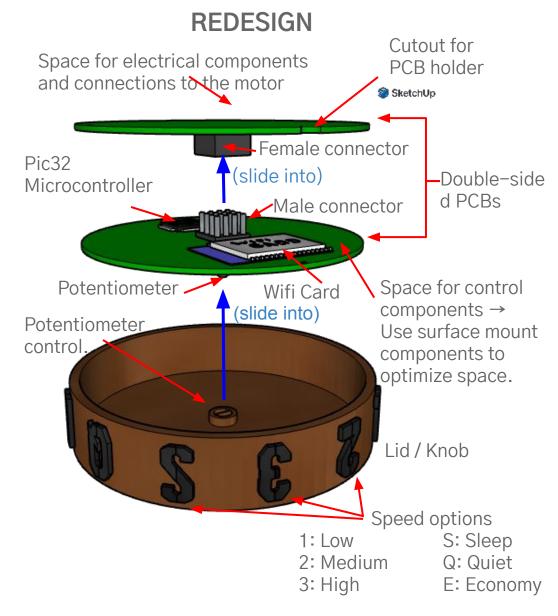
Knob PCB


Controller & Screen PCB

REDESIGN

Circuit Board	Dimensions	Area
Controller and Knob	Diameter: 3 ½ in	9.6 in ²
Power	Diameter: 3 ½ in	9.6 in ²

Controller & Knob PCB

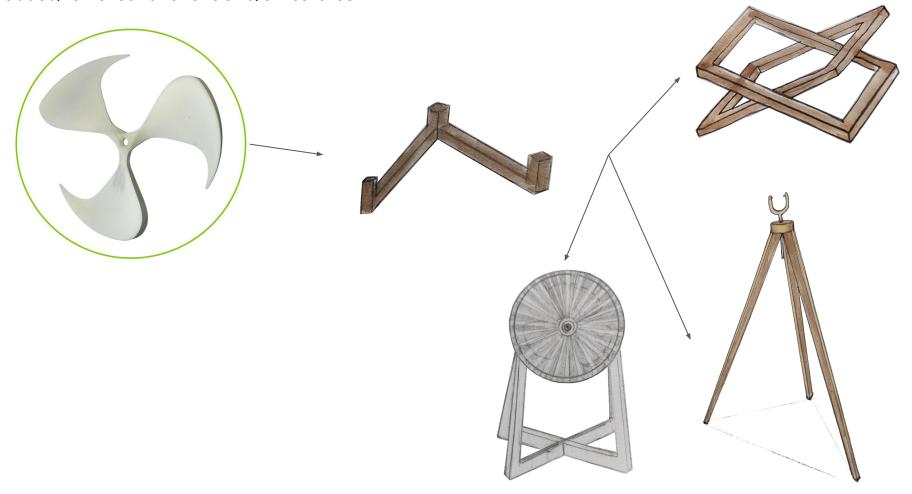

Knob for speed control

Anatomy of PCBs and Wiring Harness

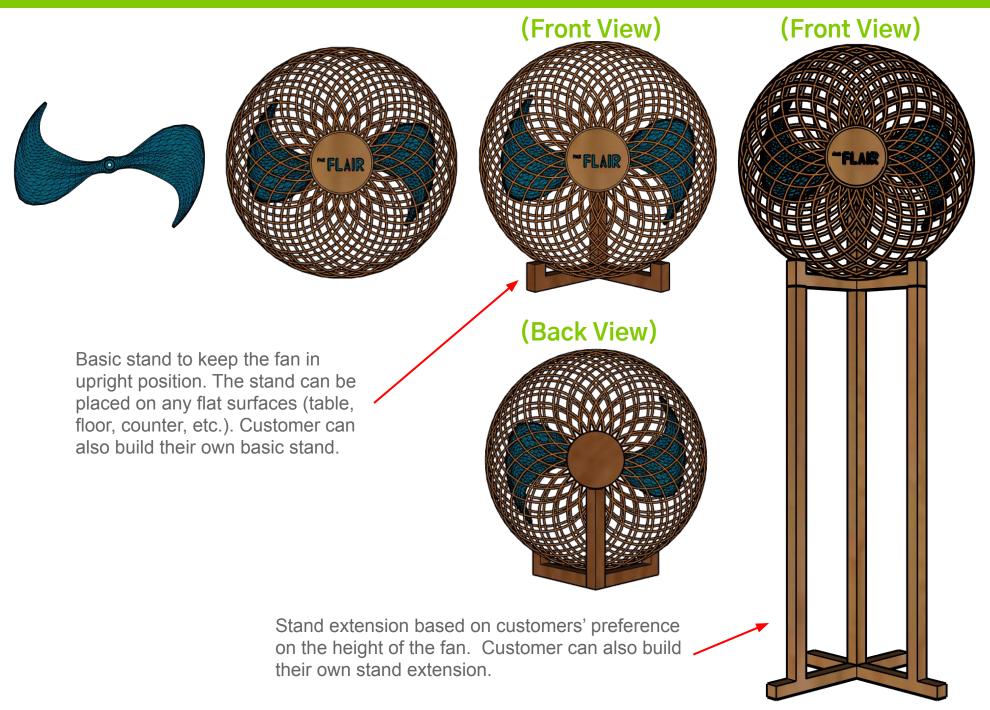
BASFLINE Power PCB Wire for signals Fan angle adjust and power Controller & Screen PCB Ribbon cable Power cable Knob PCB to outlet

PCBs are far apart

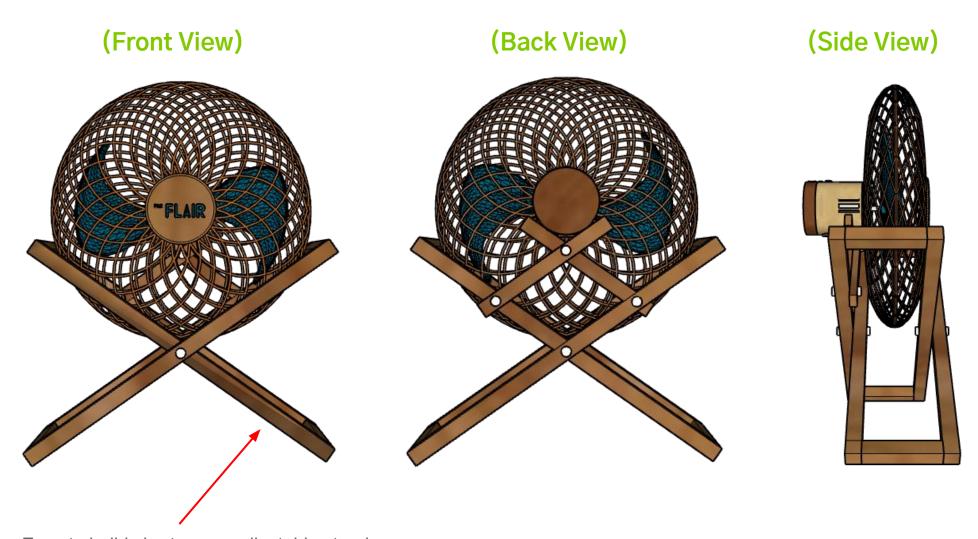
→ Require more wiring.


PCBs are plugged into each other

→ Reduce wiring.

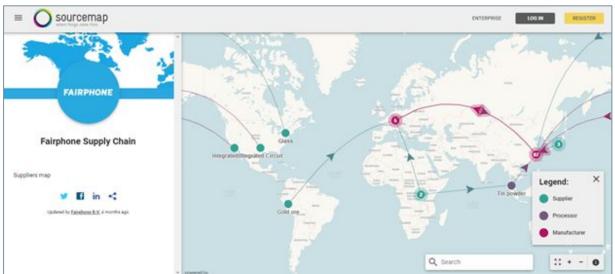

INCORPORATE MODULARITY

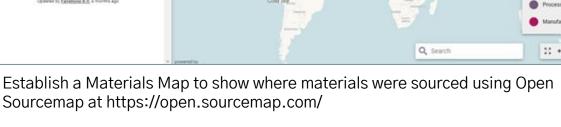
Incorporating modularity allows for replaceable parts, user selections of desired features, and incorporation of economy of scale to reach multiple price points and user needs within variable markets.

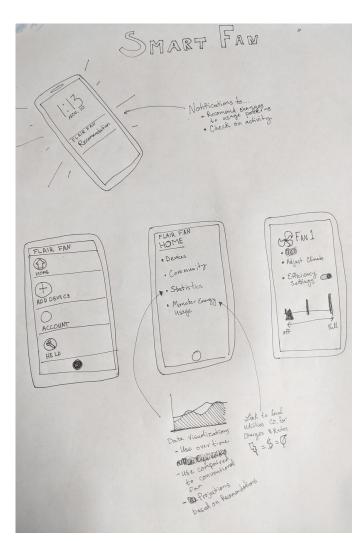

The motor/cage remains the same on all models and includes the offering of alternative bases for table top, pedestal, clamp, etc.) as well as modified routing of wires and placement of PCBs for added/removed functions and/or features.

MODULARITY 3D MODEL OPTION 1

MODULARITY 3D MODEL OPTION 2




Easy to build short range adjustable stand.


INCORPORATE PERSUASIVE BEHAVIOR

Influencing human behavior through product/service characteristics.

DIGITAL APPLICATION WIREFRAME

User interface application for tracking energy usage, accessing instruction manual, repair network, etc.

Generate static QR code: https://www.qrcode-tiger.com/

CONCLUSION

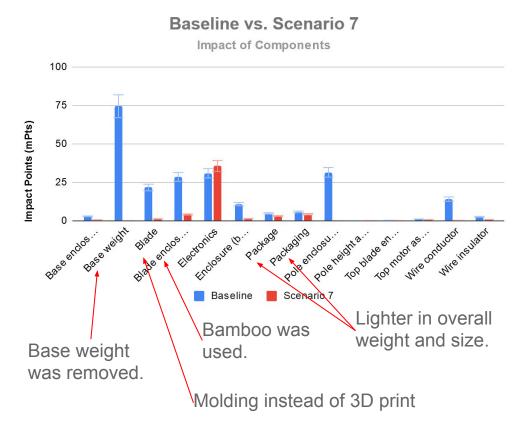
THE BASELINE VERSUS THE FINAL REDESIGN HIGHLIGHTS

BASELINE

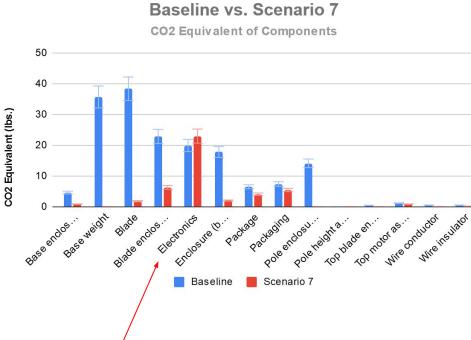
REDESIGN

Features			
Tilling	No tilling.		
Height Adjust	Available as an add-on		
Oscillation	No oscillation		
LED screen	No LED screen		

Functions		
26 speed options (1 - 26)	3 speed options (1, 2, 3)	
5 modes	3 modes (S, Q, E)	
	QR code	
	Gamification	
	Remote control	
	Control via smart phones	


Dimensions			
H 50in x W 18in x D 18in	H 19in x W 21in x D 10in		
17 lbs	8 lbs		

CONCLUSION


LIFE CYCLE ANALYSIS OF THE FINAL REDESIGN

(Environmental Impact)

The final redesign of the fan results in a 77% reduction in environmental impact and ${\rm CO_2}$ emission in all product life cycle except the usage phase.

(CO₂ Equivalent)

A slight increase in the environmental impact and CO2 emission in electronics due to the additional features such as bluetooth or wifi.

SOURCES

www.thenaturalstep.org/

www.cradletocradle.com/

Thank You